
ABOUT IRG2
IRG2 designs and synthesizes a new family of atomically precise, functional materials in which the fundamental units are preformed nanoscale building blocks, i.e., superatoms. This program is developing transformative and systematic methods to control the coupling between superatoms, enabling novel collective physical properties. Tuning the superatoms’ electronic, magnetic, vibrational, and symmetry characteristics through synthetic chemistry will allow the team to tackle three longstanding challenges in materials science: design of reconfigurable phase change materials; directional transport of energy, charge and spin; and emergent quantum phenomena. These materials have applications in digital memory, as switches and switchable absorbers; and as materials with anisotropic phonon spectra, which are of interest for new photodetectors and field effect transistors.
PARTICIPANTS
Faculty Leads: Xavier Roy, Xiaoyang Zhu
2020-2021 IRG Fellows: Eunice Bae, Daniel Chica
Participating Researchers: Dmitri Basov, Timothy Berkelbach, Theodore Betley, Cory Dean, Milan Delor, Kim Lewis, Lauren Marbella, Colin Nuckolls, David Reichman, Xavier Roy, Latha Venkataraman, Xiaoyang Zhu
Funded Postdocs: Eunice Bae (Zhu), Amymarie Bartholomew (Nuckolls), James Baxter (Delor), Daniel Chica (Roy), John Sous (Reichman/Millis), Boyuan Zhang (Venkataraman), Michael Ziebel (Dean)
Funded Graduate Students: Alexander Aydt (Roy), Raymond Dudley (Dean), Andrew Ells (Marbella), Jennifer Han (Nuckolls), Wendy He (Nuckolls), Taylor Hochuli (Nuckolls), Elena Meirzadeh (Roy/Nuckolls), Petra Shih (Berkelbach)
PAST RESEARCH HIGHLIGHTS
Some of IRG2's key research findings include the following:
-
Switchable Behaviors in a Superatomic Crystal (Xavier Roy, 2018-2019)
-
Hierarchical Coherent Phonons in 2D Superatomic Semiconductor (Xiaoyang Zhu, 2018-2019)
-
Programming Dimensionality in Superatomic Materials (Colin Nuckolls, 2017-2018)
-
Programming Dimensionality in Superatomic Materials (Colun Nuckolls, 2016-2017)
-
Van der Waals Solids from Self-Assembled Nanoscale Building Blocks (Xavier Roy, 2014-2015)